Read the First Edition of The Lens, a new magazine by LSI arrow-icon

Cristian Atria Presents nView Medical at LSI USA '23

nView is focused on 3D imaging in surgery using AI image creation algorithms that merge prior information with real-time data gathered during surgery to reduce imaging time and to minimize x-ray radiation.
Speakers
Cristian Atria
Cristian Atria
Founder & CEO, nView Medical

Transcription


Cristian Atria  0:05  


Alright, so as you may recall, it's a company that is redefining surgical imaging. And we have breakthrough 3d imaging technology that is FDA approved. It's clinically proven, and it's generating revenue. We're currently raising our Series A to accelerate commercialization. We believe that patients deserve safer surgeries. This is a patient that has undergone spine surgery. And in this surgery, this patient, the surgeon is placing screws in the patient's spine, the screw on the left has completely missed the bony anatomy that they will start getting on the screw on the right is actually going through the patient's spinal canal. Now this patient is in a lot of pain, and he needs a second surgery just to fix the first surgery. And the reason this happens is because surgeons are traditionally doing this with traditional X ray imaging, so it's called fluoroscopy, they can see what they're doing in 2d. It's an anterior posterior view or a lateral view, and they don't see the actual view I was showing you with showing before. So literature shows that the rate of misplaced crews in complex areas like in the thoracic area of the spine can be as high as 15%. With this technology. Now, we talked about the lack of having this actual image, right, you see exactly what's going on. So innovators have brought the idea of bringing up previously taken CT scan, that's an actual view, bring it into surgery with a process called registration, and then display it. And that's how you do surgical navigation. That's how we do today robotics. We're talking about robotics earlier. And that's how you do augmented reality. Now literature shows that yes, these technologies do improve the accuracy of the placement of the implants. But that improvement is only marginal. Why that because that image actually does not represent what's really happening in surgery. This is a prediction is a virtual image. So how can we solve this problem for good? Our thesis, at nView is that we need dependable imaging data. To make surgery truly accurate, you wouldn't take a self driving car based on a Google map, you want dependable imaging data. And in surgery, what that means for us is it needs to be intraoperative. So it truly represents what's happening during surgery, it needs to be in 3d, because 3d, we live in a 3d world and surgery is a 3d problem. And it needs to be efficient. When we started nView, there was 3d imaging technology out there, but it was not efficient for the operating room. And if you're familiar with the way we create 3d images, the patient is enclosed in an imaging system, it needs to be radiated from 360 degrees. And then an image can be created, that process is costly, and takes too long for surgery. So our vision was, we can create a new way to do these 3d images that is efficient, where we are not moving around the patient, we're not radiating the patient from 360 degrees, we're taking only two to four seconds of low levels of radiation. And based on that, we wanted to create 3d images. And the processing time for that is seconds. So it operates like if it was a traditional X ray system, but the output is actually a 3d image. So you can look at the image from an anterior posterior perspective from a lateral perspective, as if this was a traditional imaging system, and you can look at actual views and you can see exactly what the surgeon is doing. If he's placing a screw that is going through the spinal canal, he's going to replace the screw and that's not going to happen. So we're breaking the trade offs that typically you would have in surgery, which is oh, you can go for a fast, efficient image based on traditional imaging systems, or that you give up accuracy. Or you bring in an intraoperative CT scan, which is going to give you the accuracy you need. But then it's going to take 10 to 15 minutes just to take one image. So we're breaking the trade of providing both fast and accurate image. And because the process is so fast, just seconds of radiation, then we have orders of magnitude less radiation than the competition. So we're providing an imaging solution that is both accurate and fast and safe. Now when we try this clinically, we discovered this is not just replacing a 3d imaging system. This is actually transforming how the surgery happens first is used in more procedures than traditional imaging systems. And then it's used throughout the surgery is used at the beginning of the surgery for planning is used throughout surgery with guidance by It's a different guidance where you can reset your image whenever you need to. And then you can use it also for quality control, as I showed earlier, looking at the placement of the screws, or looking at a full body scan, for example here to see that your surgery was correctly done. And then if you focus on the left, and you focus on the right, you have the same patient, the same surgery before and after. So we have all the information we need to do predictive analytics, automatic planning, and then to help surgeons be better surgeons. So we're a team from the industry. And what's special about NVu, I think, is the team had a specific perspective, we started working in the early days of navigation as part of GE Healthcare, who is the market leader in surgical imaging. So we had this unique perspective of understanding the image creation process, as well as the image consumption process in surgery. And from our perspective, it was not about adding technologies to solve the problem, but about changing how we create images so that we can solve the problem for good. So with VC funding, and we created a team of experts, we have Dr. Foley, for example, one of the fathers of modern spine surgery, advisors from key leading institutions like Stanford or the University of Utah, where we're based, we went out and did a commercial company. How did we get to build this commercial company? Well, it took us five years to develop just the imaging component from the first NSF grant to FDA approval. After that, we added the navigation, we prove this clinically with more than with nearly 150 surgeries on actual patients. And then since last year, we started generating revenue, the result is that we have a product that is addressing a large market, which is a surgical emerging market, more than 2 billion in yearly revenues, and a scalable business model in that market, which is a mix of capital equipment, SaaS, a single use surgical kits all with 70% or plus margins. We have a strategy of pediatric first. So we look we had to start somewhere. And we look at the pediatric population, which was underserved. Because obviously the population you cannot radiate. So there was less technology, there was less solutions for them. And this is where we started before we're going to expand into adults. So here's our growth roadmap, I talked about the beachhead strategy, we're doing our Series A accelerating commercialization 2024, we're going to enter the adult market on the long space. And our goal is to reach 50% of recruitment revenue by 2026. Here's some excellent comparables that you can take a look. So obviously we've seen companies go IPO pre revenue as standalone imaging technology companies, but the most likely exit for us is going to be an m&a event. And of course, this technology not only has value on its own, but it also adds value to surgical robotics because it provides the vision that the surgical robots need or to implant companies because it complements their business model. So this is nView medical. We're making surgery safer, safer. Thank you.


 

LSI USA ‘25 is filling fast. Secure your spot today to join Medtech and Healthtech leaders.

March 17-21, 2025 Waldorf Astoria, Monarch Beach | Dana Point, CA Register arrow